Lead Sorption Efficiencies of Natural and Synthetic Mn and Fe-oxides
نویسندگان
چکیده
Lead sorption efficiencies (sorption per surface area) were measured for a number of natural and synthetic Mn and Fe-oxides using a flow through reactor. The Mn-oxide phases examined included synthetic birnessite, natural and synthetic cryptomelane, and natural and synthetic pyrolusite; the Fe-oxides studied were synthetic akaganeite, synthetic ferrihydrite, natural and synthetic goethite, and natural and synthetic hematite. The sorption flow study experiments were conducted with 10 ppm Pb with an ionic strength of either 0.01 M NaNO3 or 0.01 M KNO3 both at pH 5.5. The experimental effluent solution was analyzed using aqueous spectroscopic methods and the reacted solids were analyzed using microscopy (field emission scanning electron microscopy, FE-SEM), structure analysis (powder X-ray diffraction, XRD), bulk chemical spectroscopy (energy dispersive spectroscopy, EDS), and surface sensitive spectroscopy (X-ray photoelectron spectroscopy, XPS). Overall, the synthetic Mn-oxides did have higher sorption efficiencies than the natural Mn-oxides, which in turn were higher than the natural and synthetic Fe-oxides. Only natural pyrolusite had a sorption efficiency as low as the Fe-oxides. Most of the natural and synthetic Fe-oxides examined in this study removed about the same amount of Pb from solution once normalized to surface area, although synthetic akaganeite and hematite were significantly less reactive than the rest. The observed efficiency of Mn-oxides for Pb sorption is directly related to internal reactive sites in the structures that contain them (birnessite and cryptomelane, in the case of this study). Comparisons of solution data to XPS data indicated that Pb went into the interlayer of the birnessite, which was supported by XRD; similarly some Pb may go into the tunnels of the cryptomelane structure. Layer structures such as birnessite have the highest Pb sorption efficiency, while the 2 x 2 tunnel structure of cryptomelane has lower efficiencies than birnessite, but higher efficiencies than other Mnor Fe-oxide structures without internal reactive sites.
منابع مشابه
Modeling Pb sorption to microporous amorphous oxides as discrete particles and coatings.
Hydrous amorphous Al (HAO), Fe (HFO), and Mn (HMO) oxides are ubiquitous in the subsurface as both discrete particles and coatings and exhibit a high affinity for heavy metal contaminants. To assess risks associated with heavy metals, such as Pb, to the surrounding environment and manage remedial activities requires accurate mechanistic models with well-defined transport parameters that represe...
متن کاملValidation of TOF-SIMS and FE-SEM/EDS Techniques Combined with Sorption and Desorption Experiments to Check Competitive and Individual Pb2+ and Cd2+ Association with Components of B Soil Horizons
Sorption and desorption experiments were performed by the batch method on the B horizons of five natural soils: Umbric Cambisol, Endoleptic Luvisol, Mollic Umbrisol, Dystric Umbrisol, and Dystric Fluvisol. Individual and competitive sorption and desorption capacity and hysteresis were determined. The results showed that Pb2+ was sorbed and retained in a greater quantity than Cd2+ and that the h...
متن کاملOxidative scavenging of cerium on hydrous Fe oxide: Evidence from the distribution of rare earth elements and yttrium between Fe oxides and Mn oxides in hydrogenetic ferromanganese crusts
The distribution of the rare earths and yttrium (REY) in co-existing hydrous Mn oxides and Fe oxides that form marine hydrogenetic ferromanganese crusts is used to better describe the partitioning and fractionation of the REY between these (hydr)oxides and seawater in the natural marine system. Four fractions (easily exchangeable, Mn-oxide-bound, Fe-oxidebound, and insoluble-residue-bound REY) ...
متن کاملChemical reduction of U(VI) by Fe(II) at the solid-water interface using natural and synthetic Fe(III) oxides.
Abiotic reduction of 0.1 mM U(VI) by Fe(II) in the presence of synthetic iron oxides (biogenic magnetite, goethite, and hematite) and natural Fe(III) oxide-containing solids was investigated in pH 6.8 artificial groundwater containing 10 mM NaHCO3. In most experiments, more than 95% of added U(VI) was sorbed to solids. U(VI) was rapidly and extensively (> or = 80%) reduced in the presence of sy...
متن کاملImpacts of hydrous manganese oxide on the retention and lability of dissolved organic matter
Minerals constitute a primary ecosystem control on organic C decomposition in soils, and therefore on greenhouse gas fluxes to the atmosphere. Secondary minerals, in particular, Fe and Al (oxyhydr)oxides-collectively referred to as "oxides" hereafter-are prominent protectors of organic C against microbial decomposition through sorption and complexation reactions. However, the impacts of Mn oxid...
متن کامل